

Application

Transport

Network

Link

Physical

The Network, Transport, and Application layers

Services Provided to the Upper Layers

Transport layer sends segments in packets (in frames)

Segment

A State diagram for a simple connection management scheme.

Transitions labeled in italics are caused by packet arrivals. The solid lines show the client’s state

sequence. The dashed lines show the server’s state sequence.

The socket primitives for TCP

#include <stdio.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <string.h>

#define PORT 8080

int main(int argc, char const *argv[])

{

int sock = 0, valread;

struct sockaddr_in serv_addr;

char *hello = "Hello from client";

char buffer[1024] = {0};

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{

printf("\n Socket creation error \n");

return -1;

}

(a) Environment of the data link layer. (b) Environment of the transport layer.

Feature Datalink Layer Transport Layer

1. Over point-to-point links

such as wires or optical fiber,

receiver address is not

required.

Explicit addressing of destinations is

required because multiple

applications are run on a single

machine.

2. Establishing a connection

over the wire is simple

because the other end is

physically available.

Initial connection establishment is

complicated.

3. The point-to-point nature of

links has lesser delays and no

complicated effects on data

transmissions.

The network’s ability to delay and

duplicate packets can sometimes be

disastrous and require special

protocols to correctly transport

information.

4. A fixed number of buffers to

outgoing line is available

when a frame arrives.

A larger number of connections

needs to be managed due to

variations in the bandwidth.

Three-way handshake used for initial

packet

• Since no state from previous

connection

• Both hosts contribute fresh seq.

numbers

• CR = Connect Request

Three-way handshake

protects against odd cases:

a) Duplicate CR. Spurious

ACK does not connect

b) Duplicate CR and DATA.

Same plus DATA will be

rejected (wrong ACK).

a)

b)

X

X

X

• Key problem is to ensure

reliability while releasing (no

loss of data)

• Soultion1: Asymmetric release

(when one side breaks

connection) is abrupt and may

lose data

X

 Solution2: Symmetric release (both sides agree to
release) can’t be handled solely by the transport layer

Two-army problem shows pitfall of agreement

Attack? Attack?

 Normal release sequence, initiated by transport
user on Host 1

 DR=Disconnect Request

 Both DRs are ACKed by the other side

(a) Normal case of three-way handshake. (b) Final ACK lost.

(c) Response lost. (d) Response lost and subsequent DRs lost.

. (a) Chained fixed-size buffers. (b) Chained variable-sized buffers.

(c) One large circular buffer per connection.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

3 4 5 6

3 4 5 6

7 8 9 10

B’s Buffer

Dynamic buffer allocation. The arrows show the direction of

transmission. An ellipsis (...) indicates a lost segment.

 Kinds of transport / network sharing that can occur:

 Multiplexing: connections share a network address

 Inverse multiplexing: addresses share a connection

(a)Multiplexing. (b)Inverse multiplexing.

Different combinations of client and server strategies.

https://www.ietf.org/standards/rfcs/

 PSH – Pushed

 RST – reset

 ACK =0 (REQUEST)

 ACK = 1(ACCEPT)

 ACK – Acknowledgement

