
COMPUTER NETWORKS
Unit-II Part-1

Unit-II Part-1 (Data link layer)

 Design issues
 Framing
 Error detection and correction

 Elementary data link protocols
 Simplex protocol
 A simplex stop and wait protocol for an error-free channel
 A simplex stop and wait protocol for noisy channel

 Sliding Window protocols
 A one-bit sliding window protocol
 A protocol using Go-Back-N
 A protocol using Selective Repeat

 Example data link protocols

Data Link Layer Design Issues

 The data link layer uses the services of the physical
layer to send and receive bits over communication
channels.

 It has a number of functions, including:
1. Providing a well-defined service interface to the

network layer.
2. Dealing with transmission errors.
3. Regulating the flow of data so that slow receivers are

not swamped by fast senders.

Frame Management

 To accomplish these goals,
 The data link layer takes the packets it gets from the

network layer and
 Encapsulates them into frames for transmission.

 Each frame contains a frame header, a payload field
for holding the packet, and a frame trailer.

Relationship between packets and frames

 Error control and flow control, are found in transport
and other protocols as well.

 That is because reliability is an overall goal, and it
is achieved when all the layers work together.

Framing

 To provide service to the network layer, the data
link layer must use the service provided to it by the
physical layer

 The bit stream received by the data link layer is not
guaranteed to be error free.

 It is up to the data link layer to detect and, if
necessary, correct errors.

How Framing works

 When a frame is to be transmitted, the source
machine does the following
 Break up the bit stream into discrete frames,
 Compute a short token called a checksum for each frame,

and
 Include the checksum in the frame when it is transmitted.

How Framing works

 When a frame arrives at the destination, the receiver
machine does the following
 The checksum is recomputed.
 If the newly computed checksum is different from the one

contained in the frame,
 The data link layer knows that an error has occurred and
 Takes steps to deal with it (e.g., discarding the bad frame and

possibly also sending back an error report)

The Four Framing Methods

1. Byte count.
2. Flag bytes with byte stuffing.
3. Flag bits with bit stuffing.
4. Physical layer coding violations.

Framing using Byte count

 Byte count: specify the number of bytes in the frame
 This framing method uses a field in the header to specify

the number of bytes in the frame.
 When the data link layer at the destination sees the byte

count, it knows how many bytes follow and hence where
the end of the frame is.

 Drawback:
 The trouble with this algorithm is that the count can be

garbled by a transmission error.
 It will then be difficult to locate the correct start of the

next frame.

 Frame begins with a count of the number of bytes in
it
 Simple, but difficult to resynchronize after an error

Framing Byte Count

Framing using byte stuffing

 Flag bytes with byte stuffing: Flag byte is used as both
the starting and ending delimiter
 The second framing method gets around the problem of

resynchronization after an error by having each frame
start and end with special bytes.

 Often the same byte, called a flag byte, is used as both
the starting and ending delimiter.

 Two consecutive flag bytes indicate the end of one frame
and the start of the next.

 To differentiate between byte pattern and data, a special
ESC byte is inserted.

Framing using byte stuffing

(a) A frame delimited by flag bytes.
(b) Four examples of byte sequences before and after byte stuffing.

Framing using bit stuffing

 Flag bits with bit stuffing: Each frame begins and
ends with a special bit pattern (ex:01111110)
 The third method of delimiting the bit stream gets

around a disadvantage of byte stuffing, which is that
it is tied to the use of 8-bit bytes.

 Each frame begins and ends with a special bit
pattern, 01111110

 It also ensures a minimum density of transitions that
help the physical layer maintain synchronization

Framing using bit stuffing

(a) The original data.
(b) The data as they appear on the line.
(c) The data as they are stored in the receiver’s memory after de-stuffing.

Framing using reserved signals

 Physical layer coding violations: use some reserved
signals to indicate the start and end of frames
 The signal levels that are unused during line encoding

schemes are utilized for highlighting frame
delimitation.

 Generally, data link protocols use a combination of
these methods for safety

Problems

Q) The following character encoding is used in a data link protocol:

A: 01000111 B: 11100011 FLAG: 01111110 ESC: 11100000

Show the bit sequence transmitted (in binary) for the four-character frame:

A B ESC FLAG

when each of the following framing methods is used:

(a) Byte count.

(b) Flag bytes with byte stuffing.

(c) Starting and ending flag bytes with bit stuffing.

Q) The following data fragment occurs in the middle of a data stream for
which the byte stuffing algorithm described in the text is used:

A B ESC C ESC FLAG FLAG D.
What is the output after stuffing?

Q) A bit string, 0111101111101111110, needs to be transmitted at the
data link layer.
What is the string actually transmitted after bit stuffing?

Q) What is the maximum overhead in byte-stuffing algorithm?

Error Detection and Correction

 Two basic strategies for dealing with errors
1. Using error-correcting codes or FEC (Forward Error

Correction) :
 Include enough redundant information to enable the receiver to

deduce what the transmitted data must have been.

2. Using error-detecting codes or BEC (Backward Error
Correction) :

 Include only enough redundancy to allow the receiver to deduce
that an error has occurred (but not which error) and have it request
a retransmission.

Error Correcting codes

 Error-correcting codes are widely used on wireless
links, which are notoriously noisy and error prone
when compared to optical fibers. Examples include
1. Hamming codes.
2. Binary convolutional codes.
3. Reed-Solomon codes.
4. Low-Density Parity Check codes.

Error Correcting codes

 ECCs can be broadly categorized into two types −
 Block codes − The message is divided into fixed-sized

blocks of bits, to which redundant bits are added for
error detection or correction.

 Convolutional codes − The message comprises of data
streams of arbitrary length and parity symbols are
generated by the sliding application of a Boolean
function to the data stream.

Hamming Distance

 The number of bit positions in which two codewords differ is
called the Hamming distance

 As a simple example of an error-correcting code, consider a
code with only four valid codewords:
 0000000000,
 0000011111,
 1111100000, and
 1111111111

 This code has a distance of 5.
 If the codeword 0000000111 arrives and we expect only

single- or double-bit errors, the receiver will know that the
original must have been 0000011111.

Hamming Code

 This technique is capable of detecting up to two
simultaneous bit errors and correcting single-bit errors.

 Hamming code procedure used by the sender
Step 1 − Calculation of the number of redundant bits.
Step 2 − Positioning the redundant bits.
Step 3 − Calculating the values of each redundant bit.

 Hamming code procedure used by the sender
Step 1 − Calculation of the number of redundant bits.
Step 2 − Positioning the redundant bits.
Step 3 − Parity checking.
Step 4 − Error detection and correction

Hamming Code

 Here the bits of the codeword are numbered consecutively, starting with bit 1 at the
left end, bit 2 to its immediate right, and so on.

 The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits.

 The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits.

 The check bits are computed for even parity sums for 1000001

 For example p1=p1,m3,m5,m7,m9,m11

 p1=p1,1,0,0,0,1

 Using even parity p1 gets a value of 0 (total number of 1’s is even)

Hamming Code

 Original data: 00100001001
 Original check results are 0(p1), 0(p2), 0(p4), and 1(p8)

 A single-bit error occurred on the channel,
 The check results are 0(p1), 1(p2), 0(p4), and 1(p8).
 This gives a value of 0101 or 4 + 1=5.
 By the design of the scheme, this means that the fifth bit is in error.

Sixteen-bit messages are transmitted using a Hamming code. How many check bits are
needed to ensure that the receiver can detect and correct single-bit errors? Show the bit
pattern transmitted for the message 1101001100110101. Assume that even parity is
used in the Hamming code.

A 12-bit Hamming code whose hexadecimal value is 0xE4F arrives at a receiver.
What was the original value in hexadecimal? Assume that not more than 1 bit is in
error.

Binary convolutional codes

 In a convolutional code, an encoder processes a sequence of
input bits and generates a sequence of output bits.

 The output depends on the current and previous input bits.
 Each input bit on the left-hand side produces two output bits

on the right-hand side that are XOR sums of the input and
internal state.

Reed-Solomon codes

 Reed-Solomon codes are based on the fact that every n degree polynomial
is uniquely determined by n + 1 points.

 For example, a line having the form ax + b is determined by two points.

 Imagine that we have two data points that represent a line and we send
those two data points plus two check points chosen to lie on the same line.

 If one of the points is received in error, we can still recover the data points
by fitting a line to the received points.

 Three of the points will lie on the line, and one point, the one in error, will
not.

 By finding the line we can corrected the error.

Low-Density Parity Check codes

 Each output bit is formed from only a fraction of the
input bits.

 This leads to a matrix representation of the code
that has a low density of 1s, hence the name for the
code.

 The received codewords are decoded with an
approximation algorithm that iteratively improves
on a best fit of the received data to a legal
codeword.

 This corrects errors.

Error-Detecting Codes

 Over optical fiber or high-quality copper, the error
rate is much lower.

 Error detection and retransmission is usually more
efficient for dealing with the occasional error.
Examples include

1. Parity.
2. Checksums.
3. Cyclic Redundancy Checks (CRCs).

Parity

 Here a single bit is appended to the data.
 The bit is chosen so that the number of 1 bits in the codeword is even

(or odd).
 Doing this is equivalent to computing the (even) parity bit as the

modulo 2 sum or XOR of the data bits.

 For example, when 1011010 is sent in even parity, a bit is added to
the end to make it 10110100.

 With odd parity 1011010 becomes 10110101.
 A code with a single parity bit has a distance of 2, since any single-

bit error produces a codeword with the wrong parity
 This means that it can detect single-bit errors but no double bit

errors.

Checksums

 Used in Internet protocols (IP, ICMP, TCP, UDP)
 Basic Idea: Add up the data and send it along with sum

 The word ‘‘checksum’’ is often used to mean a group of
check bits associated with a message, regardless of how are
calculated.

 The checksum is usually placed at the end of the message,
as the complement of the sum function.

 This way, errors may be detected by summing the entire
received codeword, both data bits and checksum.

 If the result comes out to be zero, no error has been
detected.

CRC (Cyclic Redundancy Check)

 Stronger protection than checksums
 Used widely in practice, e.g., Ethernet/802.11 CRC-32
 Algorithm: Given n bits of data, generate a k bit check

sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x) a chosen divisor C(x)

 Based on mathematics of finite fields – “numbers”
correspond to polynomials use modulo arithmetic
“numbers” correspond to polynomials, use modulo
arithmetic
 e.g. interpret 10011010 as x^7 + x^4 + x^3 + x^1

CRC (Cyclic Redundancy Check)

 Algorithm for Encoding using CRC
 The communicating parties agrees upon the size of message, M(x) and

the generator polynomial, G(x).

 If r is the order of G(x), r bits are appended to the low order end
of M(x). This makes the block size bits, the value of which is xrM(x).

 The block xrM(x) is divided by G(x) using modulo 2 division.

 The remainder after division is added to xrM(x) using modulo 2
addition. The result is the frame to be transmitted, T(x). The encoding
procedure makes exactly divisible by G(x).

CRC (Cyclic Redundancy Check)

 Algorithm for Decoding using CRC
 The receiver divides the incoming data frame T(x) unit by G(x) using

modulo 2 division. Mathematically, if E(x) is the error, then modulo 2
division of [M(x) + E(x)] by G(x) is done.

 If there is no remainder, then it implies that E(x). The data frame is
accepted.

 A remainder indicates a non-zero value of E(x), or in other words
presence of an error. So the data frame is rejected.

 The receiver may then send an erroneous acknowledgment back to the
sender for retransmission.

Example of CRC calculation

Real Error detection/ Correction codes

 Detection (often at link/network/transport layers)
 Parity, simple example
 Checksums, but weak
 CRCs, widely used

 Correction (often at physical and application layers)
 Hamming codes, simple example
 Convolutional codes
 Reed-Solomon
 Low-density Parity Check (LDPC) codes

Elementary Data Link Protocols

 We begin with three simple but unrealistic protocols.
 An unrestricted simplex protocol

 A simplex stop-and-wait protocol

 A simplex protocol for a noisy channel

Frame Transmissions Types

ARQ (Automatic Repeat Request)

 Packets can be corrupted or lost.
 How do we add reliability?

 Acknowledgments (ACKs) and retransmissions after a timeout
 Automatically resend until a positive acknowledgement is received
 ARQ is generic name for protocols based on this strategy

Acknowledgments Retransmissions after a timeout

Two Issues

 How long to set the timeout?
 Only easy on a direct link, otherwise timing variability
 Way too long lowers performance
 Implies sometimes timeout will be early

 How to avoid accepting duplicate frames as new
 Given retransmissions, frame loss and imprecise timeouts
 Answer: Sequence numbers

The Need for Sequence Numbers

In the case of ACK loss (or poor choice of timeout), the receiver
can’t distinguish this message from the next

#define MAX_PKT 1024 /* determines packet size in bytes */

typedef enum {false, true} boolean; /* boolean type */
typedef unsigned int seq_nr; /* sequence or ack numbers */
typedef struct {unsigned char data[MAX_PKT];} packet;/* packet definition */
typedef enum {data, ack, nak} frame_kind; /* frame_kind definition */

typedef struct { /* frames are transported in this layer */
frame_kind kind; /* what kind of frame is it? */
seq_nr seq; /* sequence number */
seq_nr ack; /* acknowledgement number */
packet info; /* the network layer packet */

} frame;

/* Wait for an event to happen; return its type in event. */
void wait_for_event(event_type *event);

/* Fetch a packet from the network layer for transmission on the channel. */
void from_network_layer(packet *p);

/* Deliver information from an inbound frame to the network layer. */
void to_network_layer(packet *p);

/* Go get an inbound frame from the physical layer and copy it to r. */
void from_physical_layer(frame *r);

/* Pass the frame to the physical layer for transmission. */
void to_physical_layer(frame *s);

/* Start the clock running and enable the timeout event. */
void start_timer(seq_nr k);

/* Stop the clock and disable the timeout event. */
void stop_timer(seq_nr k);

Some definitions needed in the protocols to
follow. These definitions
are located in the file protocol.h.

/* Stop the auxiliary timer and disable the
ack_timeout event. */
void stop_ack_timer(void);

/* Allow the network layer to cause a
network_layer_ready event. */
void enable_network_layer(void);

/* Forbid the network layer from causing a
network_layer_ready event. */
void disable_network_layer(void);

/* Macro inc is expanded in-line: increment k
circularly. */
#define inc(k) if (k < MAX_SEQ) k = k + 1;
else k = 0

An unrestricted simplex protocol

Sender()
{

forever
{

from_host(buffer);
S.info = buffer;
sendframe(S);

}
}

Receiver()
{

forever
{

wait(event);
getframe(R);

to_host(R.info);
}

}

 We will begin with a simple but unrealistic protocol.

 In this protocol:

 Data are transmitted in one direction only

 The transmitting (Tx) and receiving (Rx) hosts are always ready

 Processing time can be ignored

 Infinite buffer space is available

 No errors occur; i.e. no damaged frames and no lost frames

/* Protocol 1 (Utopia) provides for data transmission in one direction only, from sender to receiver. The communication
channel is assumed to be error free

and the receiver is assumed to be able to process all the input infinitely quickly. Consequently, the sender just sits in a
loop pumping data out onto the line as fast as it can. */

typedef enum {frame_arrival} event_type;
#include "protocol.h"
void sender1(void)
{
frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */

while (true) {
from_network_layer(&buffer); /* go get something to send */
s.info = buffer; /* copy it into s for transmission */
to_physical_layer(&s); /* send it on its way */

} /* Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day
To the last syllable of recorded time.

--- Macbeth, V, v */
}

void receiver1(void)
{
frame r;
event_type event; /* filled in by wait, but not used here */

while (true) {
wait_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); /* pass the data to the network layer */

}
}

A simplex stop-and-wait protocol

 In this protocol we assume that

 Data are transmitted in one direction only

 No errors occur (perfect channel)

 The receiver can only process the received information at a finite rate

 The problem here is how to prevent the sender from flooding the receiver.

 A general solution could be as follows:

 The receiver send an acknowledge frame back to the sender.

 The sender, after having sent a frame, must wait for the acknowledge
frame from the receiver before sending another frame.

1 Bit Stop and Wait

 Only one outstanding frame at a time, 0 or 1

 Retransmissions re-sent with same number

 Number only needs to distinguish between
current and next frame
 A single bit will do

 Want to utilize all available bandwidth
 Need to keep more data “in flight”

 How much?
 Depends on the bandwidth-delay product?

 Leads to Sliding Window Protocol

A simplex stop-and-wait protocol

Sender()
{

forever
{

from_host(buffer);
S.info = buffer;
sendframe(S);
wait(event);

}
}

Receiver()
{

forever
{

wait(event);
getframe(R);
to_host(R.info);
sendframe(S);

}
}

/* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from sender to receiver. The communication
channel is once again assumed to be error free, as in protocol 1. However, this time the receiver has only a finite buffer

capacity and a finite processing speed, so the protocol must explicitly prevent the sender from flooding the receiver with
data faster than it can be handled. */

typedef enum {frame_arrival} event_type;
#include "protocol.h"

void sender2(void)
{

frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */
event_type event; /* frame_arrival is the only possibility */

while (true) {
from_network_layer(&buffer); /* go get something to send */
s.info = buffer; /* copy it into s for transmission */
to_physical_layer(&s); /* bye-bye little frame */
wait_for_event(&event); /* do not proceed until given the go ahead */

}
}

void receiver2(void)
{

frame r, s; /* buffers for frames */
event_type event; /* frame_arrival is the only possibility */
while (true) {

wait_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); /* pass the data to the network layer */
to_physical_layer(&s); /* send a dummy frame to awaken sender */

}
}

A simplex protocol for noisy channel

 In this protocol the unreal "error free" assumption in protocol 2 is dropped.

 Frames may be either damaged or lost completely.

 We assume that transmission errors in the frame are detected by the hardware
checksum.

 The receiver needs to distinguish only 2 possibilities:
 A new frame or a duplicate; a 1-bit sequence number is sufficient.

 At any instant the receiver expects a particular sequence number.

 Any wrong sequence numbered frame arriving at the receiver is rejected as a
duplicate.

 A correctly numbered frame arriving at the receiver is accepted, passed to the
host, and the expected sequence number is incremented by 1 (modulo 2).

A simplex protocol for noisy channel

Sender()
{

NFTS = 0; /* NFTS = Next Frame To Send */
from_host(buffer);
forever
{

S.seq = NFTS;
S.info = buffer;
sendf(S);
start_timer(S.seq);
wait(event);
if(event == frame_arrival)
{

from_host(buffer);
++NFTS; /* modulo 2 operation */

}
}

}

Receiver()
{

FE = 0; /* FE = Frame Expected */
forever
{

wait(event);
if(event == frame_arrival)
{

getf(R);
if(R.seq == FE)
{

to_host(R.info);
++FE; /* modulo 2 operation */

}
sendf(S); /* ACK */

}
}

}

/* Protocol 3 (PAR) allows unidirectional data flow over an unreliable channel. */ PROTOCOL FOR NOISY CHANNEL
#define MAX_SEQ 1 /* must be 1 for protocol 3 */
typedef enum {frame_arrival, cksum_err, timeout} event_type;
#include "protocol.h"

void sender3(void)
{

seq_nr next_frame_to_send; /* seq number of next outgoing frame */
frame s; /* scratch variable */
packet buffer; /* buffer for an outbound packet */
event_type event;

next_frame_to_send = 0; /* initialize outbound sequence numbers */
from_network_layer(&buffer); /* fetch first packet */
while (true) {

s.info = buffer; /* construct a frame for transmission */
s.seq = next_frame_to_send; /* insert sequence number in frame */
to_physical_layer(&s); /* send it on its way */
start_timer(s.seq); /* if answer takes too long, time out */
wait_for_event(&event); /* frame_arrival, cksum_err, timeout */
if (event == frame_arrival) {

from_physical_layer(&s); /* get the acknowledgement */
if (s.ack == next_frame_to_send) {

stop_timer(s.ack); /* turn the timer off */
from_network_layer(&buffer); /* get the next one to send */
inc(next_frame_to_send); /* invert next_frame_to_send */

}
}

}
}

void receiver3(void)
{
seq_nr frame_expected;

frame r, s;
event_type event;

frame_expected = 0;
while (true) {

wait_for_event(&event); /* possibilities: frame_arrival, cksum_err */
if (event == frame_arrival) { /* a valid frame has arrived */

from_physical_layer(&r); /* go get the newly arrived frame */
if (r.seq == frame_expected) { /* this is what we have been waiting for */

to_network_layer(&r.info); /* pass the data to the network layer */
inc(frame_expected); /* next time expect the other sequence nr */

}
s.ack = 1 - frame_expected; /* tell which frame is being acked */
to_physical_layer(&s); /* send acknowledgement */

}
}

}

Timeout and Retransmissions

Timeout and frame retransmission ACK lost and frame retransmission

Sliding Window Protocols

 In most practical situations there is a need for transmitting data in both
directions (i.e. between 2 computers).

 If protocol 2 or 3 is used in these situations the data frames and ACK
(control) frames in the reverse direction have to be interleaved.

 This method is acceptable but not efficient.

 An efficient method is to absorb the ACK frame into the header of the data
frame going in the same direction.

 This technique is known as piggybacking.

 If a new host packet arrives quickly the acknowledgement is piggybacked
onto it; otherwise, the host just sends a separate ACK frame.

Sliding Window Protocols

 When one host sends traffic to another it is desirable that the traffic should
arrive in the same sequence as that in which it is dispatched.

 It is also desirable that a data link should deliver frames in the order sent.

 A flexible concept of sequencing is referred to as the sliding
window concept.

 In all sliding window protocols, each outgoing frame contains a sequence
number SN ranging from 0 to 2^(n -1) where n is the number of bits
reserved for the sequence number field.

 At any instant of time the sender maintains a list of consecutive sequence
numbers corresponding to frames it is permitted to send.

 These frames are said to fall within the sending window.

Sliding Window Protocols

 Similarly, the receiver maintains a receiving window corresponding
to frames it is permitted to accept.

 The size of the window relates to the available buffers of a
receiving or sending node at which frames may be arranged into
sequence.

 At the receiving node, any frame falling outside the window is
discarded.

 Frames falling within the receiving window are accepted and
arranged into sequence.

 Once sequenced, the frames at the left of the window are delivered
to the host and an acknowledgement of the delivered frames is
transmitted to their sender.

Sliding Window Protocols

 The window is then rotated to the position where the left edge
corresponds to the next expected frame, RN.

 Whenever a new frame arrives from the host, it is given the next
highest sequence number, and the upper edge of the sending
window is advanced by one.

 The sequence numbers within the sender's window represent frames
sent but as yet not acknowledged.

 When an acknowledgement comes in, it gives the position of the
receiving left window edge which indicates what frame the receiver
expects to receive next.

 The sender then rotates its window to this position, thus making
buffers available for continuous transmission.

Sliding Window concept

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Sender maintains window of frames it can send
 Needs to buffer them for possible retransmission
 Window advances with next acknowledgements

Receiver maintains window of frames it can
receive
 Needs to keep buffer space for arrivals
 Window advances with in-order arrivals

Sliding Window Protocols

 Types
 A one-bit sliding window protocol
 A protocol using Go-Back-N
 A protocol using Selective Repeat

Sliding Window concept

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

A sliding window advancing at the sender and
receiver
 Ex: window size is 1, with a 3-bit sequence number.

At the start First frame is
sent

First frame is
received

Sender gets
first ack

Sender

Receiver

 Two scenarios show subtle interactions exist in p4:
 Simultaneous start [right] causes correct but slow operation

compared to normal [left] due to duplicate transmissions.

Time

Normal case Correct, but poor performance

One-Bit Sliding Window

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

Sliding Window concept

 Larger windows enable pipelining for efficient link
use
 Stop-and-wait (w=1) is inefficient for long links
 Best window (w) depends on bandwidth-delay (BD)
 Want w ≥ 2BD+1 to ensure high link utilization

 Pipelining leads to different choices for
errors/buffering
 We will consider Go-Back-N and Selective Repeat

Go-Back-N

Receiver only accepts/acks frames that arrive in
order:
 Discards frames that follow a missing/errored frame
 Sender times out and resends all outstanding frames

Go-Back-N ARQ, sender window size
• Size of the sender window must be less than 2 m. Size of the receiver is always 1. If m =

2, window size = 2 m – 1 = 3.

• Fig compares a window size of 3 and 4.

Accepts as
the 1st

frame in
the next
cycle-an
error

Go-Back-N

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Tradeoff made for Go-Back-N:
 Simple strategy for receiver; needs only 1 frame
 Wastes link bandwidth for errors with large

windows; entire window is retransmitted

Selective Repeat

Receiver accepts frames anywhere in receive window
 Cumulative ack indicates highest in-order frame
 NAK (negative ack) causes sender retransmission of a

missing frame before a timeout resends window

Selective Repeat

Tradeoff made for Selective Repeat:
 More complex than Go-Back-N due to buffering at

receiver and multiple timers at sender
 More efficient use of link bandwidth as only lost frames

are resent (with low error rates)

Selective Repeat

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

For correctness, we require:
 Sequence numbers (s) at least twice the window (w)

Originals OriginalsRetransmits Retransmits

Error case (s=8, w=7) – too
few sequence numbers

Correct (s=8, w=4) – enough
sequence numbers

New receive window overlaps old
– retransmits ambiguous

New and old receive window
don’t overlap – no ambiguity

Example data link protocols

 For point-to-point links we have 2 examples
1. The SONET optical fiber links are used in wide-area

networks.
 These links are widely used, for example, to connect

routers in the different locations of an ISP’s network.

2. The ADSL links run on the local loop of the telephone
network at the edge of the Internet.
 These links connect millions of individuals and businesses

to the Internet.

SONET (Synchronous Optical Network)

1. The SONET optical fiber links are used in wide-area
networks.

 These links are widely used, for example, to connect routers in the
different locations of an ISP’s network.

 Advantages of SONET:
 Transmits data to large distances
 Low electromagnetic interference
 High data rates
 Large Bandwidth

SONET. (a) A protocol stack. (b) Frame relationships

ADSL (Asymmetric Digital Subscriber Loop)

2. ADSL is a type of digital data transmission
for Internet access over symmetric copper telephone line
pairs.

 These links connect millions of individuals and businesses to the Internet.
 Advantages of ADSL:

 It doesn’t occupy the telephone line.
 It employs traditional infrastructure.
 Outperforms dial-up connection.
 Allows central and customized circuits

ADSL protocol stacks

	COMPUTER NETWORKS
	Slide Number 2
	Data Link Layer Design Issues
	Frame Management
	Slide Number 5
	Framing
	How Framing works
	How Framing works
	The Four Framing Methods
	Framing using Byte count
	Slide Number 11
	Framing using byte stuffing
	Framing using byte stuffing
	Framing using bit stuffing
	Framing using bit stuffing
	Framing using reserved signals
	Problems
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Error Detection and Correction
	Error Correcting codes
	Error Correcting codes
	Hamming Distance
	Hamming Code
	Hamming Code
	Hamming Code
	Slide Number 28
	Slide Number 29
	Binary convolutional codes
	Reed-Solomon codes
	Low-Density Parity Check codes
	Error-Detecting Codes
	Parity
	Checksums
	CRC (Cyclic Redundancy Check)
	CRC (Cyclic Redundancy Check)
	CRC (Cyclic Redundancy Check)
	Example of CRC calculation
	Real Error detection/ Correction codes
	Elementary Data Link Protocols
	Frame Transmissions Types
	ARQ (Automatic Repeat Request)
	Two Issues
	The Need for Sequence Numbers
	Slide Number 46
	Slide Number 47
	An unrestricted simplex protocol
	Slide Number 49
	A simplex stop-and-wait protocol
	1 Bit Stop and Wait
	A simplex stop-and-wait protocol
	Slide Number 53
	A simplex protocol for noisy channel
	A simplex protocol for noisy channel
	Slide Number 56
	Slide Number 57
	Timeout and Retransmissions
	Sliding Window Protocols
	Sliding Window Protocols
	Sliding Window Protocols
	Sliding Window Protocols
	Sliding Window concept
	Sliding Window Protocols
	Sliding Window concept
	One-Bit Sliding Window
	Sliding Window concept
	Go-Back-N
	Go-Back-N ARQ, sender window size
	Go-Back-N
	Selective Repeat
	Selective Repeat
	Selective Repeat
	Example data link protocols
	SONET (Synchronous Optical Network)
	ADSL (Asymmetric Digital Subscriber Loop)

