COMPUTER NETWORKS

Unit-1V

Transport Layer

Unit-lIV (Transport Layer)

QO Transport Layer

L O O O

Transport Services
Elements of Transport protocols
Connection management

TCP and UDP protocols

Application
Transport
Network
Link

Physical

Transport Layer

¢ Together with the network layer, the transport layer is the heart of the proto-
col hierarchy.

¢ The network layer provides end-to-end packet delivery using data-grams or
virtual circuits.

¢ The transport layer builds on the network layer to provide data transport
from a process on a source machine to a process on a destination machine
with a desired level of reliability that is independent of the physical
networks currently in use.

Services Provided to the Upper Layers

Host 1 Host 2

Application Application
(or session) (or session)

Application/transport
layer layer

Transport | interface
«— address |,/

T 11

Segment

Transport s S Transport
g S

entity Transport entity

l protocol l

Network — ™
address Transport/network

interface

Network layer Network layer

The Network, Transport, and Application layers

Services Provided to the Upper Layers

Transport layer sends seaments in packets (in frames)

Frame Packet TPDU
hegder header header

. TPDU payload

Packet payload —

‘*— Framepayload ————»

Services Provided to the Upper Layers

¢ The ultimate goal of the transport layer is to provide
& efficient,
& reliable, and

& cost-effective data transmission service to its users, normally processes in the
application layer.

& To achieve this, the transport layer makes use of the services provided by the
network layer.

& The software and/or hardware within the transport layer that does the work 1s
called the transport entity.

& The transport entity can be located in
& the operating system kernel,
& a library package bound into network applications,
& a separate user process, or

® the network interface card.

Differences between N/W and Transport Layer

& The transport code runs entirely on the users’ machines, but the

network layer mostly runs on the routers, which are operated by
the ISP/Carrier.

& The users have no real control over the network layer, so they
cannot solve the problem of poor service by using better routers
or putting more error handling in the data link layer because they
don’t own the routers.

& The only possibility 1s to put on top of the network layer another
layer that improves the quality of the service.

In case of a connectionless network, packets are lost or mangled, the
transport entity can detect the problem and compensate for it by using
retransmissions.

In a connection-oriented network, a transport entity is informed halfway
through a long transmission that its network connection has been
abruptly terminated, with no indication of what has happened to the
data currently in transit, it can set up a new network connection to the
remote transport entity.

The bottom four layers can be seen as the transport service provider.
The upper layer(s) are the transport service user.

The transport layer 1s in a key position, since it forms the major
boundary between the provider and user of the reliable data
transmission service.

It 1s the level that applications see.

Transport Service Primitives

¢ To allow users to access the transport service, the transport layer must
provide some operations to application programs, that 1s, a transport service
interface.

¢ The connection-oriented transport service is reliable.

& Of course, real networks are not error-free, but that is precisely the purpose of
the transport layer to provide a reliable service on top of an unreliable
network has its own interface.

Transport Service Primitives

& Primitives that applications might call to transport data for a
simple connection-oriented service:

o Client calls

o CONNECT, SEND, RECEIVE, DISCONNECT
o Server calls

o LISTEN, RECEIVE, SEND, DISCONNECT

Packetsont | Meaming
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection

SEND DATA
RECEIVE (none) Block until a DATA packet arrives

DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

Transport Service Primitives

Connection request Connect primitive
segment received executed

-

PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING

Connect primitive Connection accepted
executed | ESTABLISHED

segment received

Disconnection Disconnect

request segment primitive
PASSIVE received ! executed S

DISCONNECT |« ! DISCONNECT
PENDING PENDING

. - IDLE . .
Disconnect Disconnection request

primitive executed segment received

A State diagram for a simple connection management scheme.
Transitions labeled in italics are caused by packet arrivals. The solid lines show the client’s state
sequence. The dashed lines show the server’s state sequence.

Berkeley Sockets

& Berkeley socket primitives are used widely for Internet programming on many
operating.

¢ These sockets were first released as part of the Berkeley UNIX4.2 BSD software
distribution 1in 1983.

Berkeley Socket Primitives

Prmitve | Meaing
SOCKET Create a new communication end point
BIND Associate a local address with a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Passively establish an incoming connection

The socket primitives for TCP

Flowchart for TCP Client-Server

Server| _sockel() |

block until connect()
connection from

client

An Example of Socket Programming:
Client-side C/C++ program

/I Convert IPv4 and IPv6 addresses from text to binary form
if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr)<=0)

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>

#include <unistd.h> {
#include <string.h> printf("\nInvalid address/ Address not supported \n");
g
#define PORT 8080 return -1;
int main(int argc, char const *argv[]) ;
{ ’ if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) s
int sock = 0, valread:; 0)
struct sockaddr_in serv_addr; {
char *hello = "Hello from client"; printf("\nConnection Failed \n");
char buffer[1024] = {0}; return -1:
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)) ’
{
printf("\n Socket creation error \n"); send(sock , hello, strlen(hello) , 0);
return -1; printf("Hello message sent\n");
} valread = read(sock , buffer, 1024);
_ _ printf("%s\n",buffer);
serv_addr.sin_family = AF_INET;)
return O;

serv_addr.sin_port = htons(PORT));

An Example of Socket Programming:
Server side C/C++ program

#include <unistd.h>

#include <stdio.h>

#include <sys/socket.h>

#include <stdlib.h>

#include <netinet/in.h>

#include <string.h>

#define PORT 8080

int main(int argc, char const *argvl[])

{
int server_fd, new_socket, valread;
struct sockaddr_in address;
intopt=1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
char *hello = "Hello from server";

/I Creating socket file descriptor
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)
{

perror("socket failed");

exit(EXIT_FAILURE);

}

/I Forcefully attaching socket to the port 8080
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR |
SO_REUSEPORT, &opt, sizeof(opt)))
{
perror("setsockopt");
exit(EXIT_FAILURE);

}

address.sin_family = AF_INET,;
address.sin_addr.s_addr = INADDR_ANY:;
address.sin_port = htons(PORT);

/I Forcefully attaching socket to the port 8080

if (bind(server_fd, (struct sockaddr
*)&address, sizeof(address))<0)

perror("bind failed");
exit(EXIT_FAILURE);

if (listen(server_fd, 3) < 0)

perror("listen");
exit(EXIT_FAILURE);

if ((new_socket = accept(server_fd, (struct sockaddr
)8iaddress, (socklen_t)&addrlen))<0)
perror("accept");
exit(EXIT_FAILURE);

}

valread = read(new_socket , buffer, 1024);
printf("%s\n",buffer);

send(new_socket , hello , strlen(hello) , 0);
printf("Hello message sent\n");

return O;

Elements of Transport protocols

¢ The transport service is implemented by a transport protocol used between the
two transport entities.

¢ In some ways, transport protocols resemble the data link protocols.

¢ Both have to deal with error control, sequencing, and flow control, among
other 1ssues.

Elements of Transport protocols

& At the data link layer, two routers communicate directly via a
physical channel, whether wired or wireless, whereas at the
transport layer, this physical channel 1s replaced by the entire
network.

Router

\

\ Physical

communication channel

(a)

(a) Environment of the data link layer. (b) Environment of the transport layer.

Elements of Transport Protocols
1.

Datalink Layer Transport Layer

Over point-to-point links
such as wires or optical fiber,
receiver address 1s not
required.

Establishing a connection
over the wire 1is simple
because the other end is
physically available.

The point-to-point nature of
links has lesser delays and no
complicated effects on data
transmissions.

A fixed number of buffers to
outgoing line 1s available
when a frame arrives.

Explicit addressing of destinations is
required because multiple
applications are run on a single
machine.

Initial connection establishment is
complicated.

The network’s ability to delay and
duplicate packets can sometimes be
disastrous and require special
protocols to correctly transport
information.

A larger number of connections
needs to be managed due to
variations in the bandwidth.

® O O O o @

Elements of Transport Protocols

Addressing

Connection establishment
Connection release

Error control and flow control
Multiplexing

Crash recovery

Addressing

¢ When an application (e.g., a user) process wishes to set up a connection to a
remote application process, it must specify which one to.

& The method normally used is to define transport addresses to which
processes can listen for connection requests.

¢ In the Internet, these endpoints are called ports. We will use the generic term
TSAP(Transport Service Access Point)to mean a specific endpoint in the
transport layer

Addressing

Transport
., \
~Transport layer [TSAP 1522 \
connection

Network

layer

Data link
layer

Physical
layer

& Transport layer adds TSAPs

& Multiple clients and servers can run on a host with a single network (IP) address
® TSAPs are ports for TCP/UDP

Addressing: Example of Mail server

Process Process
server server

& Transport layer adds TSAPs

& A user process in host 1 establishes a connection with a mail server in host 2 via a
process server.

Addressing: Steps taken for connection
setup for mail access

& A Process server (or super server) listens to a set of ports at the same time,
waiting for a connection request.

& Potential users of a service begin by doing a CONNECT request, specifying
the TSAP address of the service they want.

& If no server 1s waiting for them, they get a connection to the process server.

& The process server spawns the requested server, allowing it to inherit the
existing connection with the user.

¢ The new server does the requested work, while the process server goes back to
listening for new requests

Addressing

& Three types of Ports
& Well-known Ports: ports 0 — 1023
& Registered Ports: ports 1024 — 49151
¢ Dynamic Ports: Ports 49152 — 65535

& Ports 0 through 49151 are formally registered worldwide through TANA.

& Other ports are not registered thru IANA but rather use a locally scoped port
ID system

Connection Establishment

¢ Before Communication can happen between two end processes on two
different machines, connection needs to be established.

& Unreliability of network needs to be handled.

& Key problem is to ensure reliability even though packets may be lost,
corrupted, delayed, and duplicated.

Connection Establishment

¢ Packet lifetime can be restricted to a known maximum using one (or more) of
the following techniques:

1. Restricted network design.
2. Putting a hop counter in each packet.

3. Time-stamping each packet.

Connection Establishment

¢ Unreliability of network due to delayed and duplicated packets needs to be
handled.

¢ Should not treat an old or duplicate packet as new (Use ARQ and checksums
for loss/corruption)

& Solutions and Approach:

¢ Don’t reuse sequence numbers within twice the MSL (Maximum Segment
Lifetime) of 2T=240 secs

& Three-way handshake for establishing connection

Connection Establishment: Maximum
Segment Lifetime

& With packet lifetimes bounded, it 1s possible to devise a practical and foolproof
way to reject delayed duplicate segments.

¢ The heart of the method 1s for the source to label segments with sequence
numbers that will not be reused within T secs. The period, T, and the rate of
packets per second determine the size of the sequence numbers.

Connection Establishment: Maximum
Segment Lifetime

& The clocks at different hosts need not be synchronized.
¢ The clock 1s assumed to continue running even if the host goes down.

¢ The clock-based method solves the problem of not being able to distinguish
delayed duplicate segments from new segments.

Connection Establishment: Maximum Segment
Lifetime

& Since we do not normally remember sequence numbers across connections
at the destination, we still have no way of knowing if a CONNECTION
REQUEST segment containing an initial sequence number is a duplicate of
a recent connection.

& This snag does not exist during a connection because the sliding window
protocol does remember the current sequence number

& To solve this problem the three-way handshake was introduced.

& This establishment protocol involves one peer checking with the other that
the connection request is indeed current.

Connection Establishment:
Three-way handshake

Three-way handshake used for initial

packet

* Since no state from previous
connection

* Both hosts contribute fresh seq.
numbers

* CR = Connect Request

Connection Establishment:
Three-way handshake

Host 1

Three-way handshake Old duplicate
protects against odd cases:

Duplicate CR. Spurious
ACK does not connect

Duplicate CR and DATA.
Same plus DATA will be
rejected (wrong ACK).

—~LREuge,
~"(Ack
Bl -

=

Connection Release

® There are two styles of terminating a connection

& Asymmetric release and Symmetric release.

& Asymmetric release is the way the telephone system works: when one
party hangs up, the connection 1s broken.

& Asymmetric release 1s abrupt and may result in data loss.

& Symmetric release treats the connection as two separate unidirectional
connections and requires each one to be released separately

Connection Release: Asymmetric

» Key problem is to ensure
reliability while releasing (no
loss of data)

(when one side breaks
connection) is abrupt and may —DAta
lose data R —

e

=

No data'are

delivered after
a disconnect
request

Connection Release: Symmetric

& A more sophisticated release protocol 1s needed to avoid data loss.

& One way 1s to use symmetric release, in which each direction is released
independently of the other one.

¢ Here, a host can continue to receive data even after it has sent a
DISCONNECT segment.

¢ Unfortunately, this protocol does not always work.

Connection Release

0 Solution2: Symmetric release (both sides agree to
release) can’t be handled solely by the transport layer

o Two-army problem shows pitfall of agreement

B em
538

1 White army ’,, ;
EN e

] \/

b b oh

.‘/-*
—
‘ (A
J ZINS

¢ A white army 1s encamped in a valley

¢ On both of the surrounding hillsides are blue armies.

¢ The white army is larger than either of the blue armies alone, but together the

blue armies are larger than the white army.

If either blue army attacks by itself, it will be defeated, but if the two blue
armies attack simultaneously, they will be victorious.

¢ The blue armies want to synchronize their attacks.

¢ However, their only communication medium is to send messengers on foot

down into the valley, they might be captured and the message lost.

¢ To see the relevance of the two-army problem to releasing connections, rather
than to military affairs, just substitute ‘‘disconnect’’ for “‘attack.”

& If neither side 1s prepared to disconnect until it is convinced that the other side
is prepared to disconnect too, the disconnection will never happen.

Connection Release

Send DR |—
+ start timer

Send DR
_—| + start timer

Release |«

connection

Send ACK |—_

™| Release
connection

0 Normal release sequence, 1nitiated by transport
user on Host 1

0 DR=Disconnect Request
o Both DRs are ACKed by the other side

Send DR Send DR
+ start timer + start timer

Send DR Send DR

+ start timer + start timer

Release

Release .
connection

connection

Send ACK

Release Send ACK
connection

(Timeout)
release
connection

(a) Normal case of three-way handshake. (b) Final ACK lost.

Host 1

Host 2

Host 1

Host 2

Send DR
+ start timer

(Timeout)
send DR
+ start timer

Release
connection

Send ACK

Send DR &
start timer

Send DR &
start timer

Release
connection

Send DR
+ star.t timer

o
(Timeout)

send DR
+ start timer

(N Timeouts)
release
connection

Send DR &
start timer

L]
(Timeout)

release
connection

(c) Response lost.

(d) Response lost and subsequent DRs lost.

The lesson here 1s that the transport user must be involved in deciding when
to disconnect—the problem cannot be cleanly solved by the transport
entities themselves.

For example a web server can close the connection after it sends the
response data to the client.

The server can send the client a warning and abruptly shut the connection.
If the client gets this warning, it will release its connection state then and
there. If the client does not get the warning, it will eventually realize that the
server 1s no longer talking to it and release the connection state.

The client can then release the connection after successfully receiving the
data.

Error Control and Flow Control

X Ensure data is delivered without error (done in Data

Link Layer(DLL) but there it over a single link, but here need to
consider the network.) Foundation for error control is a sliding
window (from Link layer) with checksums and retransmissions. i.e.

X Keeping a Fast transmitter from overrunning a slow
receiver. Flow control manages buffering at sender/receiver

& Issue is that data goes to/from the network and applications at
different times

¢ Window tells sender available buffering at receiver making a
variable-size sliding window

& Different buffer strategies trade efficiency / complexity

Error Control and Flow Control

& The solutions that are used at the transport layer are the
same mechanisms as used by the data-link layer.

& Even though these mechanisms are used, there are
differences in function and degree.

& The transport layer checksum protects a segment while it

crosses an entire network path which means It 1s an end-to-
end check.

& The link layer checks are not essential but nonetheless
valuable for improving performance (since without them a
corrupted packet can be sent along the entire path
unnecessarily).

Error Control and Flow Control

TCP connections have a bandwidth-delay product that is much larger than a
single segment across a wifi link.

For these situations, a large sliding window must be used. Stop-and-wait will
cripple performance.

¢ Hence, we need to look at the issue of buffering data more carefully.

¢ With multiple connections, a substantial amount of buffering for the sliding

windows, both at the sender and the receiver.

Buffer Management

¢ For low-bandwidth bursty traffic, sender buffers are used.
¢ For high-bandwidth traffic, receiver buffers are used.
¢ Problem: How to organize the buffer pool?

& Approach to the buffer size problem is to use variable-sized buffers.

¢ The advantage here 1s better memory utilization, at the price of more complicated
buffer management.

Buffer Management

The receiver may, for example, maintain a single buffer pool shared by all
connections.

When a segment comes in, an attempt is made to dynamically acquire a new
buffer.

& If one 1s available, the segment 1s accepted; otherwise, it is discarded.

& The best trade-off between source buffering and destination buffering

depends on the type of traffic carried by the connection

Buffer Management

}Segment 1

S

~Segment 2

}Segment 3

rSegment 4

Unused
space

\

. (@) Chained fixed-size buffers. (b) Chained variable-sized buffers.
(c) One large circular buffer per connection.

1
2
3
4
5
6
-
8

Error Control and Flow Control (3)

Flow control example: A’s data is limited by B’s buffer

Message

< request 8 buffers=>

<ack =15, buf= 4>

<seq =0,
<seq =1,
<seq = 2,
<ack =1,
<seq = 3,
<seq =4,
<seq = 2,
<ack = 4,
<ack = 4,
<ack = 4,
<seq = 9,
<seq = 6,
<ack = 6,
<ack =6,

~-]
>l
]|

data = m0>
data=m1i>
data = m2>
buf = 3>

data = m3>
data = m4>

HH

BN
]|

=EE
REE
ool
SEE

data = m2>
buf = 0>
buf= 1>
buf = 2>
data = ma>
data = mé>
buf = 0>
buf = 4>

BENEE
SEEEE
[S
RRRES

=S
ool
ol
—
(a)

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

Dynamic buffer allocation. The arrows show the direction of
transmission. An ellipsis (...) indicates a lost segment.

Buffer Management

& Problems with buffer allocation schemes can arise in datagram networks if
control segments can get lost, which 1s a common case.

& Since control segments are not sequenced or timed out, deadlock can arise
between communicating parties.

& To prevent this situation, each host should periodically send control segments
giving the acknowledgement and buffer status on each connection.

& That way, the deadlock will be broken, sooner or later

Buffer Management

¢ When buffer space no longer limits the maximum flow, another bottleneck
will appear: the carrying capacity of the network.

¢ What 1s needed is a mechanism that limits transmissions from the sender
based on the network’s carrying capacity rather than on the receiver’s
buffering capacity.

Multiplexing

& In the transport layer, the need for multiplexing can arise in a number of ways

& If only one network address 1s available on a host, all transport connections
on that machine have to use it.

& When a segment comes in, some way 1s needed to tell which process to give it
to.

& This situation, called multiplexing.

Inverse Multiplexing

¢ When a host has multiple network paths that it can use.

¢ If a user needs more bandwidth or more reliability than one of the network
paths can provide, a way out 1s to have a connection that distributes the traffic
among multiple network paths on a round-robin basis.

¢ This modus operandi is called inverse multiplexing.

Multiplexing

0 Kinds of transport / network sharing that can occur:
0 Multiplexing: connections share a network address
0 Inverse multiplexing: addresses share a connection

Transport address

(a)Multiplexing. (b)Inverse multiplexing.

Crash Recovery

¢ If hosts and routers are subject to crashes or connections are long-lived (e.g.,
large software or media downloads), recovery from these crashes becomes an
issue.

® Problem: How to recover from host crashes?

& The server might send a broadcast segment to all other hosts, announcing that it has
just crashed and requesting that its clients inform it of the status of all open
connections.

¢ Each client can be in one of two states: one segment outstanding, S1, or no segments
outstanding, SO.

& Based on only this state information, the client must decide whether to retransmit
the most recent segment.

& S0: If a crash occurs after the acknowledgement has been sent but before the
write has been fully completed.

& S1: The write has been done but the crash occurs before the acknowledgement
can be sent.

& The server can be programmed in one of two ways:
& acknowledge first or write first.

& The client can be programmed in one of four ways:
& always retransmit the last segment,
¢ mnever retransmit the last segment,
¢ retransmit only in state SO, or

& retransmit only in state S1.

& This gives eight combinations with each combination there is some set of
events that makes the protocol fail.

® Three events are possible at the server:
¢ sending an acknowledgement (A),
& writing to the output process (W), and

& crashing (C).

& The three events can occur in six different orderings:
& AC(W),

AWC,

C(AW),

C(WA),

WAC, and

WC(A)

O RO AR O

Crash Recovery and a sample protocol

Strategy used by
sending host

Strategy used by receiving host

First ACK, then write

First write, then ACK

AC(W)

AWC

C(AW)

C(WA)

W AC

WC(A)

Always retransmit

OK

DUP

OK

OK

DUP

DUP

Never retransmit

OK

OK

OK

Retransmit in SO

OK

OK

Retransmit in S1

LOST

OK

OK

OK = Protocol functions correctly
DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Different combinations of client and server strategies.

& The result can be restated as ‘“‘recovery from a layer N crash can only be done
by layer N + 1, 7 and then only if the higher layer retains enough status
information to reconstruct where it was before the problem occurred.

Transport Control Protocol : TCP

The TCP service model

The TCP protocol

The TCP segment header
TCP connection establishment
TCP connection release

TCP sliding window

TCP congestion control

TCP timer management

TCP — Transmission Control Protocol

& TCP provides reliable, sequenced, end-to-end byte
stream over an unreliable internetwork.

& TCP has been designed to adapt dynamically to
internetwork difference viz. topology, bandwidths,
delays, packet sizes etc.

® Defined mm RFC 793 1n Sept 1981(More info:
https://www.1etf.org/standards/rfcs/)

https://www.ietf.org/standards/rfcs/

TCP — Transmission Control Protocol

& TCP Entity accepts user data from local processes,

breaks them up into pieces = 64 KB (in practice
bytes data to fit in an Ethernet frame with IP TCP
headers) and sends each piece as a separate IP
datagram.

X Ethernet Frame data size 1s 40 — 1500 bytes.

® Upon arriving at a m/c the transport entity takes it
and constructs the original byte stream.

The TCP Service Model

¢ To obtain the TCP service both the sender and receiver
create endpoints using

& Each socket has IP address(32 bit) and Port(16 bit)
¢ Port 1s the TCP name for TSAP

® To get TCP service connection 1s to be explicitly
established between a socket on one m/c and a socket
on another m/c.

The TCP Service Model

N R —
2021 [FTP | Flevaser
22 [5G __| Remote ogn. repacamet o ot
B IR T S —

Secure Web (HTTP over SSL/TLS)
AL T —

- Examples of some assigned ports

- Internet Daemon (inetd) attach itself to multiple ports and
wait for the first connection request, then fork to that
service

TCP Service Model

& All TCP connections are full duplex (both directions)
and point-to-point (has exactly two end points)

& TCP doesn’t support multicasting or broadcasting.
& TCP 1s byte stream and not message stream.

® Message boundaries are not preserved end-to-end

The TCP Service Model:Byte stream
example

IP header \ , TCP header

\ ¥

|13

(a)

&
& Four 512-byte segments sent as separate IP diagrams

& The 2048 bytes of data delivered to the application in a single READ call

d)

The TCP Service Model

TCP may send data immediately or buffer it to send it
In one go when an application passes data to it.

To force data out -- uses the PUSH flag

Too many PUSH-es then all PUSH are collected
together and sent.

URGENT - on pushing Ctrl-C to break-off remote

computation, the sending application puts some
control flag

The TCP Protocol

& Every byte on TCP connection has its own 32- bit
sequence no.

& Sending and Receiving Entities exchange data in the form
of TCP segments.

& TCP segment consists of a fixed 20-byte header (plus an
optional part) followed by zero or more data.

& Factors limiting segment size:
& IP payload size (65515 excludes IP header)

& Each Links MTU - Ethernet its 1500 byte.

TCP Header Size

& TCP segment can have data bytes up to 65,535 — 20 byte(IP
header) - 20 byte (TCP header)

& That gives 65495 bytes.
& Also note that 65535 = 64 KB where K = 1024

S O O O O o @ @

The TCP Segment Header

o PSH — Pushed

o RST — reset

o ACK =0 (REQUEST)

o ACK = 1(ACCEPT)

o ACK - Acknowledgement

Data (optional)

Ack no = one more than what i1s next expected

TCP Header Length — how many optional field

URG - Urgent, (URGENT POINTER — OFFSET)

SYN = 1 (CONNECTION REQUEST, CONNECTION ACEEPTED),
WINDOW SIZE = How many buffers may be granted, can be zero.

FIN bit 1s used for connection release. Both SYN, FIN have Sequence Nos.
CWR/ECE - Congestion controlling bits

ECE — Echo, CWR - Congestion window reduced

The TCP Segment Header

Source port Destination port

Sequence number

TCP
haeadear
length

Checksum

Cptions (0 or more 32-bit words)

Data (optional)

® Check Sum: TCP Header + Data + Pseudo Header

¢ OPTIONSs: are of variable length and max up to 40 bytes. Each option has Type-
value-length encoding.

¢ MSS: max segment size a host 1s willing to accept
& (536 bytes is default, 536+20 TCP Hdr = 556 B every internet host has to accept.)

¢ Window size: Sndr & Rcvr can use to it to negotiate at time of connection
establishment so as to scale the window size.

TCP Connection Establishment

Host 2 Host 1

—SYN (SEQ = X)

——

=% + 1) RN
Y, ACK=%

gYN (SEQZ Y ——

-

_(_S_EQ =X+
- hainl? s b

(a)

& TCP connection establishment in the normal case.
¢ Req: SYN=1, ACK=0, Rep: SYN=1, ACK=1, Reject: RST=1

& Simultaneous connection establishment on both sides — only one is set up as
connections are identified by their end points.

TCP Connection Release

& Either party send with the FIN bit set

& When the FIN 1s acknowledged, that direction is shut down for
new data

& Full closing (TWO FIN and TWO ACK)

TCP Window Mgmt — Sliding Window (1)

Receiver Receivers
Application buffer
does a 2K

: 4K
write

Empty

Application
does a 2K
write

Full

Senderis =0 Application
blocked = AQ9C I reads 2K

Sender may
send up o ZK —=

TCP Window Mgmt - Sliding Window(2)

¢ Window management in TCP follows that
& If window = 0, sender stops sending data with 2 exception

¢ When sending Urgent bytes or

& Sending 1- byte to make the receiver to re-announce the next byte
expected.

Nagle’s Algorithm (works at sender side)

¢ For Interactive Editor application--- Sending 1-byte would involve 162 bytes
(40 to send, 40 to ACK, 41 to update, 40 to ack)

& Nagle’s Algorithm — When data comes into the sender one byte at a time, just

send the first byte and buffer the rest until the outstanding byte 1is
acknowledged

TCP Window Mgmt- Sliding Window at receiver side (2)

Window update segment sent
. — New byte arrives

-‘

1 Byte
v Receiver's buffer is full

& Silly window syndrome ... Clark’s solution — prevent receiver from sending a
window update for 1 byte.

& Specifically the receiver should not send a window update until it get the
maximum segment advertised free

Cumulative Acknowledgements

¢ Recetver — Block READ from the application until a large chunk of data
arrives

¢ Out of order — 0, 1,2,4,5,6,7 - acknowledge up to 2 and wait for segment 3 to
be transmitted.

TCP Congestion Control:
Regulating the Sending Rate (1)

YD
P

/' S___ ~ Transmission

___|_| rate adjustment

I'| I,'
Transmission
network

A

—)
e
— o
| — - |

—_ T)
N ______‘_:‘-- =/
~ l::::

Small-capacity
receiver

A fast network feeding a low-capacity receiver

Regulating the Sending Rate (2)

Internal

congestion

)
N

N

Large-capacity \g————
receiverb /

A slow network feeding a high-capacity receiver

TCP Congestion Control

¢ Two windows are used in TCP
¢ The window a receiver grants

& Congestion window

¢ When using Slow start — 1024 byte - window size moves
exponentially

¢ When a threshold is set it grows linearly

TCP Congestion Control (3)

¥ Additive
increase

Packet
loss

w
@
X
&
©
a
G
m
=
=
O
o
=
s
c
9
17
@
(o)
c
Q
(®)

Transmission round (RTTs)

Slow start followed by additive increase in TCP

TCP Timer Management

TCP uses multiple timers (at-least conceptually) to do its work. The most
important of these is the RTO (Retransmission Time Out).

When a segment is sent, a retransmission timer 1s started.

If the segment 1s acknowledged before the timer expires, the timer is
stopped.

If, on the other hand, the timer goes off before the acknowledgement comes
in, the segment 1s retransmitted (and the timer is started again).

User Datagram Protocol — UDP:
Introduction to UDP

o An unreliable, connectionless transport layer protocol.
& Protocol No for UDP 1s 17

& UDP useful 1n client-server situations where client sends a
short request to the server and expects a short reply back. If
time-out retransmit rather than establish connection. Eg:
DNS application

® Does not do flow-control, congestion control or
retransmission upon receiving bad segment.

& Provides interface to IP protocol with added feature of
demultiplexing multiple processes using ports & optional
end-to-end error detection.

Introduction to UDP

& UDP (User Datagram Protocol) Header 1s of 8 bytes
& Fields are : ports (TSAPs), length and checksum.
& UDP Length field includes 8 byte header and the data.

® Source Port - needed when reply 1s to be sent back to
source.

& Destination port: Receiver’s Port of the outgoing
segment.

& It checksums the header, the data and a conceptual IP
pseudo-header.

Source port Destination port

UDP length UDP checksum

RPC (Remote Procedure Call)

RPC connects applications over the network
with the familiar abstraction of procedure calls

Stubs package parameters/results into a message

UDP with retransmissions 1s a low-latency
transport

Server,
ﬁ» . ﬁ@
4

Operating system Operating system

RPC (Remote Procedure Call)

& Stepsin RPC

1. Client calls the client stub

2. Client Stub packs the parameters into message and makes a
system call to send the message (Packing of parameters is
Marshalling)

3. OS sends the message from client m/c to server m/c

4. OS passes message to server stub. (Unpacking of parameters
1s Un-Marshalling, server stub does it).

5. Server stub calls the server procedure.

Reply traces the same path in the other direction.

Real-Time Protocol (1)

¢ RTP (Real-time Transport Protocol) provides support for sending
real-time media over UDP

¢ Often implemented as part of the application

thernet JDP
header header header header

<«——— UUDP payload ———

<« |Ppaylopad—— »

<«——————Fthernet payload ———

Real-Time Protocol (2)

& RTP (Real-time Transport Protocol) provides

support for sending real-time media over
UDP

& Often implemented as part of the application

¢ It has two parts

¢ First Part - For Transporting audio and video data in
packets.

& Second Part - Relates to processing that takes care mostly

at the receiver to play out the audio and video at the right
time.

The Real Time Control Protocol (RTCP)

¢ The Real Time Control Protocol (RTCP) is a companion
protocol to RTP that is also defined in RFC 3550.

¢ RTCP handles feedback, synchronization, and user
interfaces to real time operations.

& Instructor was tasked by Microsoft to work within the
IETF to develop RTCP to flexibly enable a standards-
based user control for the Microsoft Netshow product’s
distributed multimedia Internet streaming operations:
streaming fast forward, pause, stop, rewind, skip to a
predetermined point, etc. It can change resolutions and
do a wide-variety of control tasks to the streamed
multimedia.

